{ "cells": [ { "cell_type": "markdown", "id": "174ca2ed-b340-4188-899e-0e322699ad82", "metadata": {}, "source": [ "#### B.C.Berndt: Number Theory in the Spirit of Ramanujanより\n", "\n", "$0\\lt x \\lt 1$の範囲で関数$F(x)$を\n", "$$F(x)=exp\\left(-\\pi\\,\\frac{{}_2 F_1\\left(\\frac{1}{2},\\frac{1}{2};1;1-x\\right)}{{}_2 F_1\\left(\\frac{1}{2},\\frac{1}{2};1;x\\right)}\\right)$$\n", "と定義しました(超幾何関数もFですが、引数の形が異なるので区別できると思います)。\n", "
\n", "
\n", "**Chapter 5 Corollary 5.2.4**
\n", "$m$を$0$以上の整数として、$n=2^m$であるとき、次式が成り立つ:
\n", "$$F\\left(1-\\frac{\\varphi\\left(-q\\right)^4}{\\varphi\\left(q\\right)^4}\\right)^{n}=F\\left(1-\\frac{\\varphi\\left(-q^{n}\\right)^4}{\\varphi\\left(q^{n}\\right)^4}\\right)$$\n", "\n", "今回はこの補題を証明していきます。
\n", "証明の方針としてまず今回の補題を少し一般化して、$F(a)=F(b)^n$ならば$F(1-a)^n=F(1-b)$が成り立つことを示します。これと前回証明したCorollary 5.2.3 $F\\left(\\frac{\\varphi\\left(-q\\right)^4}{\\varphi\\left(q\\right)^4}\\right)=F\\left(\\frac{\\varphi\\left(-q^{n}\\right)^4}{\\varphi\\left(q^{n}\\right)^4}\\right)^{n}$ を使えば証明は終了します。" ] }, { "cell_type": "code", "execution_count": 1, "id": "fa4f9e20-93d8-4e03-8f5a-e613aeefbf3d", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{0}$}F\\left(x\\right):=\\exp \\left(\\frac{-\\pi\\,{\\it hypergeometric}\\left(\\left[ \\frac{1}{2} , \\frac{1}{2} \\right] , \\left[ 1 \\right] , 1-x\\right)}{{\\it hypergeometric}\\left(\\left[ \\frac{1}{2} , \\frac{1}{2} \\right] , \\left[ 1 \\right] , x\\right)}\\right)\\]" ], "text/plain": [ " 1 1\n", " - %pi hypergeometric([-, -], [1], 1 - x)\n", " 2 2\n", "(%o0) F(x) := exp(----------------------------------------)\n", " 1 1\n", " hypergeometric([-, -], [1], x)\n", " 2 2" ], "text/x-maxima": [ "F(x):=exp(\n", " (-%pi*hypergeometric([1/2,1/2],[1],1-x))/hypergeometric([1/2,1/2],[1],x))" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "F(x):=exp(-%pi*hypergeometric([1/2,1/2],[1],1-x)/hypergeometric([1/2,1/2],[1],x));" ] }, { "cell_type": "markdown", "id": "d7ef84c8-8498-49ee-b74e-86d2c928c654", "metadata": {}, "source": [ "一般化したステートメントの仮定の部分の式からスタートして、結論の式を等式変形で導きます。" ] }, { "cell_type": "code", "execution_count": 2, "id": "ef505a56-d481-4eb1-8805-eee6f3a43068", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{1}$}F\\left(a\\right)=F\\left(b\\right)^{n}\\]" ], "text/plain": [ " n\n", "(%o1) F(a) = F (b)" ], "text/x-maxima": [ "'F(a) = 'F(b)^n" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'F(a)='F(b)^n;" ] }, { "cell_type": "markdown", "id": "bad4bf40-1619-4a17-98ba-b9545fbff805", "metadata": {}, "source": [ "定義に基づいて展開します。" ] }, { "cell_type": "code", "execution_count": 3, "id": "6f204e35-b7ef-4cd3-b474-cc17d8beb71c", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{2}$}e^ {- \\frac{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-a\\right)}{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,a\\right)} }=e^ {- \\frac{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-b\\right)\\,n}{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,b\\right)} }\\]" ], "text/plain": [ " %pi hypergeometric([1/2, 1/2], [1], 1 - a)\n", " - ------------------------------------------\n", " hypergeometric([1/2, 1/2], [1], a)\n", "(%o2) %e = \n", " %pi hypergeometric([1/2, 1/2], [1], 1 - b) n\n", " - --------------------------------------------\n", " hypergeometric([1/2, 1/2], [1], b)\n", " %e" ], "text/x-maxima": [ "%e^-((%pi*hypergeometric([1/2,1/2],[1],1-a))/hypergeometric([1/2,1/2],[1],a))\n", " = %e^-((%pi*hypergeometric([1/2,1/2],[1],1-b)*n)\n", " /hypergeometric([1/2,1/2],[1],b))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "SB-KERNEL:REDEFINITION-WITH-DEFUN: redefining MAXIMA::SIMP-HYPERGEOMETRIC in DEFUN\n" ] } ], "source": [ "%,nouns;" ] }, { "cell_type": "markdown", "id": "6fbbc36d-cce8-4ed5-8722-c39aea63a36c", "metadata": {}, "source": [ "両辺の対数をとり、逆数をとり、さらに両辺に$n$をかけます。" ] }, { "cell_type": "code", "execution_count": 4, "id": "78b27a8d-e870-4147-ba63-c8976078bd4e", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{3}$}-\\frac{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,a\\right)\\,n}{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-a\\right)}=-\\frac{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,b\\right)}{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-b\\right)}\\]" ], "text/plain": [ " 1 1\n", " hypergeometric([-, -], [1], a) n\n", " 2 2\n", "(%o3) - -------------------------------------- = \n", " 1 1\n", " %pi hypergeometric([-, -], [1], 1 - a)\n", " 2 2\n", " 1 1\n", " hypergeometric([-, -], [1], b)\n", " 2 2\n", " - --------------------------------------\n", " 1 1\n", " %pi hypergeometric([-, -], [1], 1 - b)\n", " 2 2" ], "text/x-maxima": [ "-(hypergeometric([1/2,1/2],[1],a)*n)/(%pi*hypergeometric([1/2,1/2],[1],1-a))\n", " = -hypergeometric([1/2,1/2],[1],b)/(%pi*hypergeometric([1/2,1/2],[1],1-b))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "n/log(%);" ] }, { "cell_type": "markdown", "id": "f920a90c-3abf-4b3f-be63-deadbfe433fa", "metadata": {}, "source": [ "両辺に$\\pi^2$をかけてから、指数関数を適用します。" ] }, { "cell_type": "code", "execution_count": 5, "id": "9a4253b6-2777-479a-9f6e-1e5ef67a1046", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{4}$}e^{-\\frac{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,a\\right)\\,n}{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-a\\right)}=-\\frac{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,b\\right)}{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-b\\right)}}\\]" ], "text/plain": [ " 1 1\n", " %pi hypergeometric([-, -], [1], a) n\n", " 2 2\n", "(%o4) expt(%e, - ------------------------------------ = \n", " 1 1\n", " hypergeometric([-, -], [1], 1 - a)\n", " 2 2\n", " 1 1\n", " %pi hypergeometric([-, -], [1], b)\n", " 2 2\n", " - ----------------------------------)\n", " 1 1\n", " hypergeometric([-, -], [1], 1 - b)\n", " 2 2" ], "text/x-maxima": [ "%e^(-(%pi*hypergeometric([1/2,1/2],[1],a)*n)/hypergeometric([1/2,1/2],[1],1-a)\n", " = -(%pi*hypergeometric([1/2,1/2],[1],b))\n", " /hypergeometric([1/2,1/2],[1],1-b))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "exp(%*%pi^2);" ] }, { "cell_type": "markdown", "id": "2487da77-1cbd-4758-9cc4-3d62604fc30f", "metadata": {}, "source": [ "目標とする式の左辺、右辺を表示すると一致していることがわかります。" ] }, { "cell_type": "code", "execution_count": 6, "id": "10f1a969-6764-4a0d-99f4-16440be9bb03", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{5}$}\\left[ e^ {- \\frac{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,a\\right)\\,n}{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-a\\right)} } , e^ {- \\frac{\\pi\\,F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,b\\right)}{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,1-b\\right)} } \\right] \\]" ], "text/plain": [ " %pi hypergeometric([1/2, 1/2], [1], a) n\n", " - ----------------------------------------\n", " hypergeometric([1/2, 1/2], [1], 1 - a)\n", "(%o5) [%e , \n", " %pi hypergeometric([1/2, 1/2], [1], b)\n", " - --------------------------------------\n", " hypergeometric([1/2, 1/2], [1], 1 - b)\n", " %e ]" ], "text/x-maxima": [ "[%e^-((%pi*hypergeometric([1/2,1/2],[1],a)*n)\n", " /hypergeometric([1/2,1/2],[1],1-a)),\n", " %e^-((%pi*hypergeometric([1/2,1/2],[1],b))\n", " /hypergeometric([1/2,1/2],[1],1-b))]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[F(1-a)^n, F(1-b)];" ] }, { "cell_type": "markdown", "id": "8064545f-1170-492d-8ff2-3c117ecba01e", "metadata": {}, "source": [ "という訳で仮定から出発して結論の式を導くことが出来ました。" ] }, { "cell_type": "code", "execution_count": 7, "id": "732fd392-61f7-440b-9e27-a5bac77415d9", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{6}$}F\\left(1-a\\right)^{n}=F\\left(1-b\\right)\\]" ], "text/plain": [ " n\n", "(%o6) F (1 - a) = F(1 - b)" ], "text/x-maxima": [ "'F(1-a)^n = 'F(1-b)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'F(1-a)^n='F(1-b);" ] }, { "cell_type": "markdown", "id": "9aec020f-a2e5-4bba-813d-74226f5ca9e5", "metadata": {}, "source": [ "$F\\left(a\\right)=F\\left(b\\right)^{n}$ならば$F\\left(1-a\\right)^{n}=F\\left(1-b\\right)$であることが示ました。

\n", "最後のステップです。$a=\\frac{\\varphi\\left(-q\\right)^4}{\\varphi\\left(q\\right)^4}, b=\\frac{\\varphi\\left(-q^{n}\\right)^4}{\\varphi\\left(q^{n}\\right)^4}$と置きます。すると仮定の部分は$F\\left(\\frac{\\varphi\\left(-q\\right)^4}{\\varphi\\left(q\\right)^4}\\right)=F\\left(\\frac{\\varphi\\left(-q^{n}\\right)^4}{\\varphi\\left(q^{n}\\right)^4}\\right)^{n}$となります。これはCorollary 5.2.3そのものですから成立することがわかります。\n", "\n", "また結論の部分は$F\\left(1-\\frac{\\varphi\\left(-q\\right)^4}{\\varphi\\left(q\\right)^4}\\right)^{n}=F\\left(1-\\frac{\\varphi\\left(-q^{n}\\right)^4}{\\varphi\\left(q^{n}\\right)^4}\\right)$となります。これは今回証明したい式ですから、これで証明は終わりました。" ] } ], "metadata": { "kernelspec": { "display_name": "Maxima", "language": "maxima", "name": "maxima" }, "language_info": { "codemirror_mode": "maxima", "file_extension": ".mac", "mimetype": "text/x-maxima", "name": "maxima", "pygments_lexer": "maxima", "version": "5.44.0" } }, "nbformat": 4, "nbformat_minor": 5 }