{ "cells": [ { "cell_type": "markdown", "id": "40741790-0d96-452e-b5bc-5d70f0d38422", "metadata": {}, "source": [ "### 超幾何関数に関するクローゼンの恒等式\n", "\n", "定理:$_{2}F_1\\left(a,b;a+b+\\frac12;x\\right)^2= {}_3F_2\\left(2\\,a,2\\,b,a+b;2\\,a+2\\,b,a+b+\\frac12;x\\right)$
\n", "左辺はガウスの超幾何関数の2乗、右辺は一般超幾何関数です。\n", "\n", "証明の方針ですが、超幾何関数の恒等式の証明でよくある、左辺と右辺が同じ微分方程式を満たし、かつ必要な初期値が一致する、というやり方です。まず定理の右辺を処理します。一般超幾何関数$G(x)={}_3F_2(2\\,a,2\\,b,a+b;2\\,a+2\\,b,a+b+\\frac12;x)$が満たす微分方程式をもとに$F(x)^2=G(x)$となる$F(x)$が満たす微分方程式を求めます。といっても代入して整理するだけです。\n", "\n", "次にガウスの超幾何関数$F(x)={}_{2}F_1(,b;a+b+\\frac12;x)$が満たす微分方程式の適当な線型結合による新しい微分方程式を作ります。作り方から明らかに$F(x)$は新しい微分方程式も満たします。そしてこの新しい微分方程式が前の段落で求めた微分方程式と一致することを示します。といっても先に求めた微分方程式から後で求めた微分方程式を引き算して$0$になることを確認するだけです。\n", "\n", "今回の証明はLorenz Millaという数学者の2021年の論文[\"A DETAILED PROOF OF THE CHUDNOVSKY FORMULA WITH MEANS OF BASIC COMPLEX ANALYSIS\"](https://arxiv.org/pdf/1809.00533.pdf)のp24-29を参考にしました。" ] }, { "cell_type": "code", "execution_count": 1, "id": "8d56c9d9-5cf9-4038-8247-4b5f48ae852d", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{0}$}\\mbox{ /Users/yasube/Programming2/maxima-5.44.0-install/share/maxima/5.44.0/share/to\\_poly\\_solve/to\\_poly\\_solve\\_extra.lisp }\\]" ], "text/plain": [ "(%o0) /Users/yasube/Programming2/maxima-5.44.0-install/share/maxima/5.44.0/sha\\\n", "re/to_poly_solve/to_poly_solve_extra.lisp" ], "text/x-maxima": [ "\"/Users/yasube/Programming2/maxima-5.44.0-install/share/maxima/5.44.0/share/to_poly_solve/to_poly_solve_extra.lisp\"" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "SB-KERNEL:REDEFINITION-WITH-DEFUN: redefining MAXIMA::$NONNEGINTEGERP in DEFUN\n", "SB-KERNEL:REDEFINITION-WITH-DEFUN: redefining MAXIMA::$POLYNOMIALP in DEFUN\n", "SB-KERNEL:REDEFINITION-WITH-DEFUN: redefining MAXIMA::POLYNOMIALP in DEFUN\n", "SB-KERNEL:REDEFINITION-WITH-DEFMACRO: redefining MAXIMA::OPAPPLY in DEFMACRO\n", "SB-KERNEL:REDEFINITION-WITH-DEFMACRO: redefining MAXIMA::OPCONS in DEFMACRO\n" ] } ], "source": [ "load(\"to_poly_solve_extra.lisp\");" ] }, { "cell_type": "markdown", "id": "f39235d8-28ec-49ee-b255-74e73b5572fc", "metadata": {}, "source": [ "一般超幾何関数$G(x)={}_3F_2\\left(a,b,c;d,e;x\\right)$が満たす微分方程式は以前の記事で求めました。それが次の微分方程式です。" ] }, { "cell_type": "code", "execution_count": 2, "id": "8b4f2a07-499b-46dc-a09b-5060e00aff4c", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{1}$}\\left(x-1\\right)\\,x^2\\,\\left(\\frac{d^3}{d\\,x^3}\\,G\\left(x\\right)\\right)+x\\,\\left(\\left(c+b+a+3\\right)\\,x-e-d-1\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,G\\left(x\\right)\\right)+\\left(\\left(b\\,c+a\\,c+c+a\\,b+b+a+1\\right)\\,x-d\\,e\\right)\\,\\left(\\frac{d}{d\\,x}\\,G\\left(x\\right)\\right)+a\\,b\\,c\\,G\\left(x\\right)=0\\]" ], "text/plain": [ " 3 2\n", " 2 d d\n", "(%o1) (x - 1) x (--- (G(x))) + x ((c + b + a + 3) x - e - d - 1) (--- (G(x)))\n", " 3 2\n", " dx dx\n", " d\n", " + ((b c + a c + c + a b + b + a + 1) x - d e) (-- (G(x))) + a b c G(x) = 0\n", " dx" ], "text/x-maxima": [ "(x-1)*x^2*'diff(G(x),x,3)+x*((c+b+a+3)*x-e-d-1)*'diff(G(x),x,2)\n", " +((b*c+a*c+c+a*b+b+a+1)*x-d*e)*'diff(G(x),x,1)\n", " +a*b*c*G(x)\n", " = 0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF2:x^2*(x-1)*diff(G(x),x,3)\n", "+x*(-(d+e+1)+(a+b+c+3)*x)*diff(G(x),x,2)\n", "+(-d*e+(a+b+c+a*b+b*c+c*a+1)*x)*diff(G(x),x)\n", "+a*b*c*G(x)=0;" ] }, { "cell_type": "markdown", "id": "dba61c5d-6f48-4224-9601-47bfcca419e8", "metadata": {}, "source": [ "${}_3F_2\\left(2\\,a,2\\,b,a+b;2\\,a+2\\,b,a+b+\\frac12;x\\right)$の満たす微分方程式は$a,b,c,d,e$を$2\\,a, 2\\,b, a+b, 2\\,a+2\\,b, a+b+\\frac12$に置き換えることで得られます。" ] }, { "cell_type": "code", "execution_count": 3, "id": "719a9ada-ef51-4708-b590-3ace95ffa069", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{2}$}\\left(x-1\\right)\\,x^2\\,\\left(\\frac{d^3}{d\\,x^3}\\,G\\left(x\\right)\\right)+x\\,\\left(\\left(3\\,b+3\\,a+3\\right)\\,x-3\\,b-3\\,a-\\frac{3}{2}\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,G\\left(x\\right)\\right)+\\left(\\left(2\\,b\\,\\left(b+a\\right)+2\\,a\\,\\left(b+a\\right)+4\\,a\\,b+3\\,b+3\\,a+1\\right)\\,x-\\left(b+a+\\frac{1}{2}\\right)\\,\\left(2\\,b+2\\,a\\right)\\right)\\,\\left(\\frac{d}{d\\,x}\\,G\\left(x\\right)\\right)+4\\,a\\,b\\,\\left(b+a\\right)\\,G\\left(x\\right)=0\\]" ], "text/plain": [ " 3\n", " 2 d 3\n", "(%o2) (x - 1) x (--- (G(x))) + x ((3 b + 3 a + 3) x - 3 b - 3 a - -)\n", " 3 2\n", " dx\n", " 2\n", " d\n", " (--- (G(x))) + ((2 b (b + a) + 2 a (b + a) + 4 a b + 3 b + 3 a + 1) x\n", " 2\n", " dx\n", " 1 d\n", " - (b + a + -) (2 b + 2 a)) (-- (G(x))) + 4 a b (b + a) G(x) = 0\n", " 2 dx" ], "text/x-maxima": [ "(x-1)*x^2*'diff(G(x),x,3)+x*((3*b+3*a+3)*x-3*b-3*a-3/2)*'diff(G(x),x,2)\n", " +((2*b*(b+a)+2*a*(b+a)+4*a*b+3*b+3*a+1)*x\n", " -(b+a+1/2)*(2*b+2*a))\n", " *'diff(G(x),x,1)+4*a*b*(b+a)*G(x)\n", " = 0" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF21:subst_parallel([a=2*a,b=2*b,c=a+b,d=2*a+2*b,e=a+b+1/2],DF2);" ] }, { "cell_type": "markdown", "id": "4b0641b5-713c-4b39-a5e6-58d1ca51b243", "metadata": {}, "source": [ "自乗すると$G(x)$になる関数$F(x)$の満たす微分方程式は、DF21の$G(x)$に$F(x)^2$を代入して整理すれば得られます。これをDF22とします。ここまでで定理の右辺の処理は終わりです。" ] }, { "cell_type": "code", "execution_count": 4, "id": "502553dd-9239-4bbd-afa4-d72263a9d3bb", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{3}$}\\left(2\\,x^3-2\\,x^2\\right)\\,F\\left(x\\right)\\,\\left(\\frac{d^3}{d\\,x^3}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,x^3-6\\,x^2\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,b+6\\,a+6\\right)\\,x^2+\\left(-6\\,b-6\\,a-3\\right)\\,x\\right)\\,F\\left(x\\right)\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,b+6\\,a+6\\right)\\,x^2+\\left(-6\\,b-6\\,a-3\\right)\\,x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)^2+\\left(\\left(4\\,b^2+\\left(16\\,a+6\\right)\\,b+4\\,a^2+6\\,a+2\\right)\\,x-4\\,b^2+\\left(-8\\,a-2\\right)\\,b-4\\,a^2-2\\,a\\right)\\,F\\left(x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+\\left(4\\,a\\,b^2+4\\,a^2\\,b\\right)\\,F\\left(x\\right)^2=0\\]" ], "text/plain": [ " 3\n", " 3 2 d 3 2 d\n", "(%o3) (2 x - 2 x ) F(x) (--- (F(x))) + ((6 x - 6 x ) (-- (F(x)))\n", " 3 dx\n", " dx\n", " 2\n", " 2 d\n", " + ((6 b + 6 a + 6) x + ((- 6 b) - 6 a - 3) x) F(x)) (--- (F(x)))\n", " 2\n", " dx\n", " 2 d 2\n", " + ((6 b + 6 a + 6) x + ((- 6 b) - 6 a - 3) x) (-- (F(x)))\n", " dx\n", " 2 2 2 2\n", " + ((4 b + (16 a + 6) b + 4 a + 6 a + 2) x - 4 b + ((- 8 a) - 2) b - 4 a\n", " d 2 2 2\n", " - 2 a) F(x) (-- (F(x))) + (4 a b + 4 a b) F (x) = 0\n", " dx" ], "text/x-maxima": [ "(2*x^3-2*x^2)*F(x)*'diff(F(x),x,3)+((6*x^3-6*x^2)*'diff(F(x),x,1)\n", " +((6*b+6*a+6)*x^2+((-6*b)-6*a-3)*x)*F(x))\n", " *'diff(F(x),x,2)\n", " +((6*b+6*a+6)*x^2+((-6*b)-6*a-3)*x)\n", " *('diff(F(x),x,1))^2\n", " +((4*b^2+(16*a+6)*b+4*a^2+6*a+2)*x\n", " -4*b^2+((-8*a)-2)*b-4*a^2-2*a)\n", " *F(x)*'diff(F(x),x,1)\n", " +(4*a*b^2+4*a^2*b)*F(x)^2\n", " = 0" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF22:DF21,G(x):=F(x)^2,nouns,ratsimp;" ] }, { "cell_type": "markdown", "id": "1adf6b69-d5d1-47a8-bf26-0c7f5efb580a", "metadata": {}, "source": [ "次は定理の左辺の処理に取り掛かります。以前の記事でガウスの超幾何関数$F(x)={}_2F_1(a,b;c;x)$を満たす微分方程式を求めました。これをDF1とします。またDF1に$x$をかけたものをDF11とします。さらにDF11を$x$で微分したものをDF12とします。" ] }, { "cell_type": "code", "execution_count": 5, "id": "168adfd0-b37e-4eef-a33c-e28015445149", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{4}$}\\left(x^2-x\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(b+a+1\\right)\\,x-c\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+a\\,b\\,F\\left(x\\right)=0\\]" ], "text/plain": [ " 2\n", " 2 d d\n", "(%o4) (x - x) (--- (F(x))) + ((b + a + 1) x - c) (-- (F(x))) + a b F(x) = 0\n", " 2 dx\n", " dx" ], "text/x-maxima": [ "(x^2-x)*'diff(F(x),x,2)+((b+a+1)*x-c)*'diff(F(x),x,1)+a*b*F(x) = 0" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF1:(x^2-x)*diff(F(x),x,2)+((a+b+1)*x-c)*diff(F(x),x)+a*b*F(x)=0;" ] }, { "cell_type": "code", "execution_count": 6, "id": "791590e3-50a3-433e-9557-01f0fe320b2e", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{5}$}\\left(x^3-x^2\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(b+a+1\\right)\\,x^2-c\\,x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+a\\,b\\,x\\,F\\left(x\\right)=0\\]" ], "text/plain": [ " 2\n", " 3 2 d 2 d\n", "(%o5) (x - x ) (--- (F(x))) + ((b + a + 1) x - c x) (-- (F(x)))\n", " 2 dx\n", " dx\n", " + a b x F(x) = 0" ], "text/x-maxima": [ "(x^3-x^2)*'diff(F(x),x,2)+((b+a+1)*x^2-c*x)*'diff(F(x),x,1)+a*b*x*F(x) = 0" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF11:DF1*x,ratsimp;" ] }, { "cell_type": "code", "execution_count": 7, "id": "e6f47f1f-7e7e-4f7e-a1de-036786733b6f", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{6}$}\\left(x^3-x^2\\right)\\,\\left(\\frac{d^3}{d\\,x^3}\\,F\\left(x\\right)\\right)+\\left(\\left(b+a+4\\right)\\,x^2+\\left(-c-2\\right)\\,x\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(\\left(a+2\\right)\\,b+2\\,a+2\\right)\\,x-c\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+a\\,b\\,F\\left(x\\right)=0\\]" ], "text/plain": [ " 3 2\n", " 3 2 d 2 d\n", "(%o6) (x - x ) (--- (F(x))) + ((b + a + 4) x + ((- c) - 2) x) (--- (F(x)))\n", " 3 2\n", " dx dx\n", " d\n", " + (((a + 2) b + 2 a + 2) x - c) (-- (F(x))) + a b F(x) = 0\n", " dx" ], "text/x-maxima": [ "(x^3-x^2)*'diff(F(x),x,3)+((b+a+4)*x^2+((-c)-2)*x)*'diff(F(x),x,2)\n", " +(((a+2)*b+2*a+2)*x-c)*'diff(F(x),x,1)+a*b*F(x)\n", " = 0" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF12:diff(DF11,x),ratsimp;" ] }, { "cell_type": "markdown", "id": "26bdd2ce-d939-4387-9c60-afcfbb938955", "metadata": {}, "source": [ "次のステップが若干謎なのですが、上記のDF1, DF11, DF12を素材として$(2\\,a+2\\,b-1)\\,2\\,F(x)\\,DF1 + 6\\,\\frac{d\\,F(x)}{d\\,x}\\,DF11 + 2\\,F(x)\\,DF12$という微分方程式を構成してみます。ちなみにこのような作り方ですから元の$F(x)={}_{2}F_1(a,b;c;x)$がこの微分方程式を満たすことは明らかです。" ] }, { "cell_type": "code", "execution_count": 8, "id": "a334382c-cc3b-468b-bfef-1765889724c5", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{7}$}2\\,F\\left(x\\right)\\,\\left(\\left(x^3-x^2\\right)\\,\\left(\\frac{d^3}{d\\,x^3}\\,F\\left(x\\right)\\right)+\\left(\\left(b+a+4\\right)\\,x^2+\\left(-c-2\\right)\\,x\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(\\left(a+2\\right)\\,b+2\\,a+2\\right)\\,x-c\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+a\\,b\\,F\\left(x\\right)\\right)+6\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)\\,\\left(\\left(x^3-x^2\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(b+a+1\\right)\\,x^2-c\\,x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+a\\,b\\,x\\,F\\left(x\\right)\\right)+2\\,\\left(2\\,b+2\\,a-1\\right)\\,F\\left(x\\right)\\,\\left(\\left(x^2-x\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(b+a+1\\right)\\,x-c\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+a\\,b\\,F\\left(x\\right)\\right)=0\\]" ], "text/plain": [ " 3\n", " 3 2 d 2\n", "(%o7) 2 F(x) ((x - x ) (--- (F(x))) + ((b + a + 4) x + ((- c) - 2) x)\n", " 3\n", " dx\n", " 2\n", " d d\n", " (--- (F(x))) + (((a + 2) b + 2 a + 2) x - c) (-- (F(x))) + a b F(x))\n", " 2 dx\n", " dx\n", " 2\n", " d 3 2 d 2 d\n", " + 6 (-- (F(x))) ((x - x ) (--- (F(x))) + ((b + a + 1) x - c x) (-- (F(x)))\n", " dx 2 dx\n", " dx\n", " + a b x F(x)) + 2 (2 b + 2 a - 1) F(x)\n", " 2\n", " 2 d d\n", " ((x - x) (--- (F(x))) + ((b + a + 1) x - c) (-- (F(x))) + a b F(x)) = 0\n", " 2 dx\n", " dx" ], "text/x-maxima": [ "2*F(x)\n", " *((x^3-x^2)*'diff(F(x),x,3)+((b+a+4)*x^2+((-c)-2)*x)*'diff(F(x),x,2)\n", " +(((a+2)*b+2*a+2)*x-c)*'diff(F(x),x,1)+a*b*F(x))\n", " +6*'diff(F(x),x,1)\n", " *((x^3-x^2)*'diff(F(x),x,2)+((b+a+1)*x^2-c*x)*'diff(F(x),x,1)+a*b*x*F(x))\n", " +2*(2*b+2*a-1)*F(x)\n", " *((x^2-x)*'diff(F(x),x,2)+((b+a+1)*x-c)*'diff(F(x),x,1)+a*b*F(x))\n", " = 0" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF13:(2*a+2*b-1)*2*F(x)*DF1+6*diff(F(x),x)*DF11+2*F(x)*DF12;" ] }, { "cell_type": "markdown", "id": "7929a4fb-69ab-4dec-8235-27bf75a0fdce", "metadata": {}, "source": [ "若干整理します。" ] }, { "cell_type": "code", "execution_count": 9, "id": "65c44ac4-8e59-422c-a6f2-015dfbf5fe9e", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{8}$}\\left(2\\,x^3-2\\,x^2\\right)\\,F\\left(x\\right)\\,\\left(\\frac{d^3}{d\\,x^3}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,x^3-6\\,x^2\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,b+6\\,a+6\\right)\\,x^2+\\left(-2\\,c-4\\,b-4\\,a-2\\right)\\,x\\right)\\,F\\left(x\\right)\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,b+6\\,a+6\\right)\\,x^2-6\\,c\\,x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)^2+\\left(\\left(4\\,b^2+\\left(16\\,a+6\\right)\\,b+4\\,a^2+6\\,a+2\\right)\\,x+\\left(-4\\,b-4\\,a\\right)\\,c\\right)\\,F\\left(x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+\\left(4\\,a\\,b^2+4\\,a^2\\,b\\right)\\,F\\left(x\\right)^2=0\\]" ], "text/plain": [ " 3\n", " 3 2 d 3 2 d\n", "(%o8) (2 x - 2 x ) F(x) (--- (F(x))) + ((6 x - 6 x ) (-- (F(x)))\n", " 3 dx\n", " dx\n", " 2\n", " 2 d\n", " + ((6 b + 6 a + 6) x + ((- 2 c) - 4 b - 4 a - 2) x) F(x)) (--- (F(x)))\n", " 2\n", " dx\n", " 2 d 2\n", " + ((6 b + 6 a + 6) x - 6 c x) (-- (F(x)))\n", " dx\n", " 2 2\n", " + ((4 b + (16 a + 6) b + 4 a + 6 a + 2) x + ((- 4 b) - 4 a) c) F(x)\n", " d 2 2 2\n", " (-- (F(x))) + (4 a b + 4 a b) F (x) = 0\n", " dx" ], "text/x-maxima": [ "(2*x^3-2*x^2)*F(x)*'diff(F(x),x,3)+((6*x^3-6*x^2)*'diff(F(x),x,1)\n", " +((6*b+6*a+6)*x^2+((-2*c)-4*b-4*a-2)*x)\n", " *F(x))\n", " *'diff(F(x),x,2)\n", " +((6*b+6*a+6)*x^2-6*c*x)*('diff(F(x),x,1))^2\n", " +((4*b^2+(16*a+6)*b+4*a^2+6*a+2)*x\n", " +((-4*b)-4*a)*c)\n", " *F(x)*'diff(F(x),x,1)\n", " +(4*a*b^2+4*a^2*b)*F(x)^2\n", " = 0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF14:ratsimp(DF13);" ] }, { "cell_type": "markdown", "id": "94cacaa9-c629-47d1-93e8-4d4db88e3923", "metadata": {}, "source": [ "少し特別な$c=a+b+\\frac12$の場合、$F(x)={}_{2}F_1(a,b;a+b+\\frac12;x)$は次の微分方程式DF15を満たします。" ] }, { "cell_type": "code", "execution_count": 10, "id": "d863b3e5-d8b5-41ff-9808-59d9fb57137e", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{9}$}\\left(2\\,x^3-2\\,x^2\\right)\\,F\\left(x\\right)\\,\\left(\\frac{d^3}{d\\,x^3}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,x^3-6\\,x^2\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,b+6\\,a+6\\right)\\,x^2+\\left(-6\\,b-6\\,a-3\\right)\\,x\\right)\\,F\\left(x\\right)\\right)\\,\\left(\\frac{d^2}{d\\,x^2}\\,F\\left(x\\right)\\right)+\\left(\\left(6\\,b+6\\,a+6\\right)\\,x^2+\\left(-6\\,b-6\\,a-3\\right)\\,x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)^2+\\left(\\left(4\\,b^2+\\left(16\\,a+6\\right)\\,b+4\\,a^2+6\\,a+2\\right)\\,x-4\\,b^2+\\left(-8\\,a-2\\right)\\,b-4\\,a^2-2\\,a\\right)\\,F\\left(x\\right)\\,\\left(\\frac{d}{d\\,x}\\,F\\left(x\\right)\\right)+\\left(4\\,a\\,b^2+4\\,a^2\\,b\\right)\\,F\\left(x\\right)^2=0\\]" ], "text/plain": [ " 3\n", " 3 2 d 3 2 d\n", "(%o9) (2 x - 2 x ) F(x) (--- (F(x))) + ((6 x - 6 x ) (-- (F(x)))\n", " 3 dx\n", " dx\n", " 2\n", " 2 d\n", " + ((6 b + 6 a + 6) x + ((- 6 b) - 6 a - 3) x) F(x)) (--- (F(x)))\n", " 2\n", " dx\n", " 2 d 2\n", " + ((6 b + 6 a + 6) x + ((- 6 b) - 6 a - 3) x) (-- (F(x)))\n", " dx\n", " 2 2 2 2\n", " + ((4 b + (16 a + 6) b + 4 a + 6 a + 2) x - 4 b + ((- 8 a) - 2) b - 4 a\n", " d 2 2 2\n", " - 2 a) F(x) (-- (F(x))) + (4 a b + 4 a b) F (x) = 0\n", " dx" ], "text/x-maxima": [ "(2*x^3-2*x^2)*F(x)*'diff(F(x),x,3)+((6*x^3-6*x^2)*'diff(F(x),x,1)\n", " +((6*b+6*a+6)*x^2+((-6*b)-6*a-3)*x)*F(x))\n", " *'diff(F(x),x,2)\n", " +((6*b+6*a+6)*x^2+((-6*b)-6*a-3)*x)\n", " *('diff(F(x),x,1))^2\n", " +((4*b^2+(16*a+6)*b+4*a^2+6*a+2)*x\n", " -4*b^2+((-8*a)-2)*b-4*a^2-2*a)\n", " *F(x)*'diff(F(x),x,1)\n", " +(4*a*b^2+4*a^2*b)*F(x)^2\n", " = 0" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DF15:DF14,c=a+b+1/2,ratsimp;" ] }, { "cell_type": "code", "execution_count": 11, "id": "a406adbc-a3dd-4133-8179-d8510b3ca5d9", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{10}$}0\\]" ], "text/plain": [ "(%o10) 0" ], "text/x-maxima": [ "0" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lhs(DF22)-lhs(DF15),expand;" ] }, { "cell_type": "markdown", "id": "bf11c724-b1af-4a46-b50d-7e4b3cc7350a", "metadata": {}, "source": [ "なんと素晴らしいことにDF22の左辺とDF15の左辺は全く等しかったのです。すなわち$F(x)={}_{2}F_1(a,b;a+b+\\frac12;x)$はDF22も満たすことがわかりました。これで$_{2}F_1\\left(a,b;a+b+\\frac12;x\\right)^2$と${}_3F_2\\left(2\\,a,2\\,b,a+b;2\\,a+2\\,b,a+b+\\frac12;x\\right)$は同じ微分方程式を満たすことがわかりました。

\n", "\n", "$F(x)=_{2}F_1\\left(a,b;a+b+\\frac12;x\\right)$と$G(x)={}_3F_2\\left(2\\,a,2\\,b,a+b;2\\,a+2\\,b,a+b+\\frac12;x\\right)$で$F(x)^2$と$G(x)$の初期値が十分に一致すること、つまり$F(0)^2=G(0), F'(0)^2=G'(0), F''(0)^2=G''(0), F'''(0)^2=G'''(0)$を示すことは次回にしましょう。" ] }, { "cell_type": "code", "execution_count": null, "id": "43676d9f-494e-4418-b0aa-bac88363331c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Maxima", "language": "maxima", "name": "maxima" }, "language_info": { "codemirror_mode": "maxima", "file_extension": ".mac", "mimetype": "text/x-maxima", "name": "maxima", "pygments_lexer": "maxima", "version": "5.44.0" } }, "nbformat": 4, "nbformat_minor": 5 }