{ "cells": [ { "cell_type": "markdown", "id": "6acf21a2-0bb6-4bc0-84bb-d71d17c40dd3", "metadata": {}, "source": [ "定理  次の2つの式が成り立つ。\n", "$$ P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right)=\\left(1-2\\,x_{n}\\right)\\,\\sum_{k=0}^{\\infty }{\\left(3\\,k+1\\right)\\,A_{k}\\,X_{n}^{k}}$$\n", "$$ \\frac{6\\,\\sqrt{n}}{\\pi}-P\\left(e^ {- \\frac{2\\,\\pi}{\\sqrt{n}} }\\right)=n\\,P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right) $$\n", "ただし$q, x_n, X_n, z_n$を次のように定義する。\n", "$n$を適当な自然数として$q$を$q=e^{-\\pi\\,\\sqrt{n}}$と定義する。$q=exp(-\\pi\\,\\frac{{}_2F_1(\\frac12,\\frac12;1;1-x)}{{}_2F_1(\\frac12,\\frac12;1;x)})$だったから$\\sqrt{n}=\\frac{{}_2F_1(\\frac12,\\frac12;1;1-x)}{{}_2F_1(\\frac12,\\frac12;1;x)}$。そこでそうなる$x$を$x_n$と表記する。この$x_n$を使って$z_n, X_n$を次のように定義する。$z_n={}_2F_1(\\frac12,\\frac12;1;x_n), X_n=4\\,x_n\\,(1-x_n)$。

\n", "

\n", "\n", "\n", "系\n", "$$1-24\\,\\sum_{n=1}^{\\infty }{\\frac{n\\,e^ {- 2\\,\\pi\\,n }}{1-e^ {- 2\\,\\pi\\,n }}}=\\frac{3}{\\pi} $$\n", "

\n", "\n", "\n", "定理の証明は前回証明した次の2つの式変形して行います。とは言っても上記の$q=e^{-\\pi\\,\\sqrt{n}}$の定義を代入して整理するだけです。\n", "$$ P(q^2)=(1-2\\,x)\\sum_{k=0}^{\\infty}(3\\,k+1)\\,A_k\\,X^k $$\n", "$$ 6-a\\,P\\left(e^ {- 2\\,a }\\right)=b\\,P\\left(e^ {- 2\\,b }\\right) $$\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "28430f93-9c3a-4b23-933a-64fa7ee1ffc2", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{0}$}P\\left(q^2\\right)=\\left(\\sum_{k=0}^{\\infty }{X^{k}\\,\\left(3\\,k+1\\right)\\,A_{k}}\\right)\\,\\left(1-2\\,x\\right)\\]" ], "text/plain": [ " inf\n", " ====\n", " 2 \\ k\n", "(%o0) P(q ) = ( > X (3 k + 1) A ) (1 - 2 x)\n", " / k\n", " ====\n", " k = 0" ], "text/x-maxima": [ "P(q^2) = ('sum(X^k*(3*k+1)*A[k],k,0,inf))*(1-2*x)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "P(q^2)=(1-2*x)*sum((3*k+1)*A[k]*X^k,k,0,inf);" ] }, { "cell_type": "code", "execution_count": 2, "id": "a591b2ea-cb3b-4aa6-b8c3-ed4cbf1209e4", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{1}$}P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right)=\\left(1-2\\,x_{n}\\right)\\,\\sum_{k=0}^{\\infty }{\\left(3\\,k+1\\right)\\,A_{k}\\,X_{n}^{k}}\\]" ], "text/plain": [ " inf\n", " ====\n", " - 2 %pi sqrt(n) \\ k\n", "(%o1) P(%e ) = (1 - 2 x ) > (3 k + 1) A X\n", " n / k n\n", " ====\n", " k = 0" ], "text/x-maxima": [ "P(%e^-(2*%pi*sqrt(n))) = (1-2*x[n])*'sum((3*k+1)*A[k]*X[n]^k,k,0,inf)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%,q=exp(-%pi*sqrt(n)),x=x[n], X=X[n];" ] }, { "cell_type": "markdown", "id": "125e3474-2291-42db-8866-efcbf9205fe7", "metadata": {}, "source": [ "これで最初の式の証明は終了です。二番目の式の証明も簡明です。$a\\,b=\\pi^2$を満たす$a=\\frac{\\pi}{\\sqrt{n}}, b=\\pi\\,\\sqrt{n}$を次の式に代入して整理します。" ] }, { "cell_type": "code", "execution_count": 3, "id": "67ad1b60-9aec-41c6-ba36-a65b94f8579a", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{2}$}6-a\\,P\\left(e^ {- 2\\,a }\\right)=b\\,P\\left(e^ {- 2\\,b }\\right)\\]" ], "text/plain": [ " - 2 a - 2 b\n", "(%o2) 6 - a P(%e ) = b P(%e )" ], "text/x-maxima": [ "6-a*P(%e^-(2*a)) = b*P(%e^-(2*b))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A1:6-a*P(exp(-2*a))=b*P(exp(-2*b));" ] }, { "cell_type": "code", "execution_count": 4, "id": "4aed9887-1258-4f2c-9869-266031dee05b", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{3}$}6-\\frac{\\pi\\,P\\left(e^ {- \\frac{2\\,\\pi}{\\sqrt{n}} }\\right)}{\\sqrt{n}}=\\pi\\,\\sqrt{n}\\,P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right)\\]" ], "text/plain": [ " 2 %pi\n", " - -------\n", " sqrt(n)\n", " %pi P(%e ) - 2 %pi sqrt(n)\n", "(%o3) 6 - ------------------ = %pi sqrt(n) P(%e )\n", " sqrt(n)" ], "text/x-maxima": [ "6-(%pi*P(%e^-((2*%pi)/sqrt(n))))/sqrt(n) = %pi*sqrt(n)*P(%e^-(2*%pi*sqrt(n)))" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A2:A1,a=%pi/sqrt(n),b=%pi*sqrt(n);" ] }, { "cell_type": "code", "execution_count": 5, "id": "afa83cc9-1068-4694-9ae0-117cca359397", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{4}$}\\frac{6\\,\\sqrt{n}}{\\pi}-P\\left(e^ {- \\frac{2\\,\\pi}{\\sqrt{n}} }\\right)=n\\,P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right)\\]" ], "text/plain": [ " 2 %pi\n", " - -------\n", " 6 sqrt(n) sqrt(n) - 2 %pi sqrt(n)\n", "(%o4) --------- - P(%e ) = n P(%e )\n", " %pi" ], "text/x-maxima": [ "(6*sqrt(n))/%pi-P(%e^-((2*%pi)/sqrt(n))) = n*P(%e^-(2*%pi*sqrt(n)))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A3:A2*sqrt(n)/%pi,expand;" ] }, { "cell_type": "markdown", "id": "dfd26ea4-87bb-415b-9716-563ceca0abe4", "metadata": {}, "source": [ "これで証明は終了です。

\n", "\n", "系の証明はこの式で$n=1$とすることで自明に得られます。" ] }, { "cell_type": "code", "execution_count": 6, "id": "7fcc108c-dc29-45c9-a39a-372f64d3fb54", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{5}$}\\frac{6}{\\pi}-P\\left(e^ {- 2\\,\\pi }\\right)=P\\left(e^ {- 2\\,\\pi }\\right)\\]" ], "text/plain": [ " 6 - 2 %pi - 2 %pi\n", "(%o5) --- - P(%e ) = P(%e )\n", " %pi" ], "text/x-maxima": [ "6/%pi-P(%e^-(2*%pi)) = P(%e^-(2*%pi))" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%,n=1;" ] }, { "cell_type": "code", "execution_count": 7, "id": "aeb18e37-36b1-465e-849f-cf72da879d98", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{6}$}\\left[ P\\left(e^ {- 2\\,\\pi }\\right)=\\frac{3}{\\pi} \\right] \\]" ], "text/plain": [ " - 2 %pi 3\n", "(%o6) [P(%e ) = ---]\n", " %pi" ], "text/x-maxima": [ "[P(%e^-(2*%pi)) = 3/%pi]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "solve(%,rhs(%));" ] }, { "cell_type": "code", "execution_count": 8, "id": "1deac3dc-d0ac-44d8-820e-845680abbf1b", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{7}$}\\left[ 1-24\\,\\sum_{n=1}^{\\infty }{\\frac{n\\,e^ {- 2\\,\\pi\\,n }}{1-e^ {- 2\\,\\pi\\,n }}}=\\frac{3}{\\pi} \\right] \\]" ], "text/plain": [ " inf\n", " ==== - 2 %pi n\n", " \\ n %e 3\n", "(%o7) [1 - 24 > --------------- = ---]\n", " / - 2 %pi n %pi\n", " ==== 1 - %e\n", " n = 1" ], "text/x-maxima": [ "[1-24*'sum((n*%e^-(2*%pi*n))/(1-%e^-(2*%pi*n)),n,1,inf) = 3/%pi]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%,P(q):=1-24*sum(n*q^n/(1-q^n),n,1,inf);" ] } ], "metadata": { "kernelspec": { "display_name": "Maxima", "language": "maxima", "name": "maxima" }, "language_info": { "codemirror_mode": "maxima", "file_extension": ".mac", "mimetype": "text/x-maxima", "name": "maxima", "pygments_lexer": "maxima", "version": "5.44.0" } }, "nbformat": 4, "nbformat_minor": 5 }