{ "cells": [ { "cell_type": "markdown", "id": "7d23f412-95ba-469b-95ea-dd19e111b468", "metadata": {}, "source": [ "超幾何関数の関係式として別の2次変換公式とクローゼンの公式を組み合わせることで、別の「クローゼンの公式の特別な場合」を導くことができます。さらにその結果をアイゼンシュタイン級数の変換公式と組み合わせることで、$P(e^{-2\\,\\pi\\,\\sqrt{n}})$に関する別の公式を導出できます。そうすることで別のラマヌジャンの円周率公式を証明することができます。\n", "\n", "今回は今までとは別のクローゼンの公式の特別な場合と別の$P(e^{-2\\,\\pi\\,\\sqrt{n}})$に関する公式を導きます。\n", "\n", "使う2次変換公式は次のとおりです[DLMF, Eq. 15.8.16]。\n", "$${}_2F_1\\left(a,b; -b+a+1;z\\right)=\\frac{1}{\\left(1-z\\right)^{a}}\\cdot{}_2F_1\\left(\\frac{a}{2},-b+\\frac{a}{2}+\\frac{1}{2};-b+a+1; -\\frac{4\\,z}{\\left(1-z\\right)^2}\\right)$$\n", "

\n", "\n", "\n", "\n", "定理1\n", "$${}_2F_1\\left(\\frac12,\\frac12;1;x\\right)^2=\\frac{1}{1-x}\\cdot{}_3F_2\\left(\\frac12,\\frac12,\\frac12;1,1;-\\frac{4\\,x}{(1-x)^2}\\right)$$

\n", "\n", "定理2 $Y=\\frac{4\\,x}{(1-x)^2}, Y_n=\\frac{4\\,x_n}{(1-x_n)^2}, A_k=\\frac{\\left(\\frac12 \\right)_k^3}{k!^3}$として\n", "$$P\\left(q^2\\right)=-\\frac{\\left(\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(3\\,k+1\\right)\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)\\,\\left(x+1\\right)}{x-1}$$\n", "$$P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right)=-\\frac{\\left(x_{n}+1\\right)\\,\\sum_{k=0}^{\\infty }{\\left(3\\,k+1\\right)\\,\\left(-1\\right)^{k}\\,A_{k}\\,Y_{n}^{k}}}{x_{n}-1}$$" ] }, { "cell_type": "markdown", "id": "ad3bf6ff-901b-4bea-8cc7-be3fada1af0d", "metadata": {}, "source": [ "まず定理1の証明から始めます。最初にクローゼンの公式を思い出しましょう。" ] }, { "cell_type": "code", "execution_count": 18, "id": "06b473ec-968b-438d-9ed2-1ca9493b4bdf", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{18}$}F\\left( \\left. \\begin{array}{c}a,\\;b\\\\b+a+\\frac{1}{2}\\end{array} \\right |,z\\right)^2=F\\left( \\left. \\begin{array}{c}2\\,a,\\;2\\,b,\\;b+a\\\\b+a+\\frac{1}{2},\\;2\\,b+2\\,a\\end{array} \\right |,z\\right)\\]" ], "text/plain": [ " 2 1\n", "(%o18) hypergeometric ([a, b], [b + a + -], z) = \n", " 2\n", " 1\n", " hypergeometric([2 a, 2 b, b + a], [b + a + -, 2 b + 2 a], z)\n", " 2" ], "text/x-maxima": [ "hypergeometric([a,b],[b+a+1/2],z)^2 = hypergeometric([2*a,2*b,b+a],\n", " [b+a+1/2,2*b+2*a],z)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "CL:hypergeometric([a,b],[a+b+1/2],z)^2=hypergeometric([2*a,2*b,a+b],[2*a+2*b,a+b+1/2],z);" ] }, { "cell_type": "markdown", "id": "b3cdd0af-6ea5-40e7-9f6f-0bf0b848d388", "metadata": {}, "source": [ "定理の式の右辺をターゲットとしてクローゼンの公式の右辺を睨んで$a,b,z$に代入する値を考えます。この場合$a=b=\\frac{1}{4}, z=-\\frac{4\\,x}{(1-x)^2}$が良さそうなので、これらを代入した式を計算し、$CL1$とします。" ] }, { "cell_type": "code", "execution_count": 19, "id": "7b69ae6b-cbfd-4cb9-b7c2-e5d1e2656935", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{19}$}F\\left( \\left. \\begin{array}{c}\\frac{1}{4},\\;\\frac{1}{4}\\\\1\\end{array} \\right |,-\\frac{4\\,x}{\\left(1-x\\right)^2}\\right)^2=F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2},\\;\\frac{1}{2}\\\\1,\\;1\\end{array} \\right |,-\\frac{4\\,x}{\\left(1-x\\right)^2}\\right)\\]" ], "text/plain": [ " 2 1 1 4 x\n", "(%o19) hypergeometric ([-, -], [1], - --------) = \n", " 4 4 2\n", " (1 - x)\n", " 1 1 1 4 x\n", " hypergeometric([-, -, -], [1, 1], - --------)\n", " 2 2 2 2\n", " (1 - x)" ], "text/x-maxima": [ "hypergeometric([1/4,1/4],[1],-(4*x)/(1-x)^2)^2\n", " = hypergeometric([1/2,1/2,1/2],[1,1],-(4*x)/(1-x)^2)" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "CL1:CL,a=1/4,b=1/4,z=-4*x/(1-x)^2;" ] }, { "cell_type": "markdown", "id": "472e37c6-80b3-4814-8d3c-ae54600608ec", "metadata": {}, "source": [ "次にNISTのデータベースから式15.8.16を参照し、$DLMF15\\_8\\_16$として定義します。" ] }, { "cell_type": "code", "execution_count": 21, "id": "4de72826-4f63-43d2-b64e-90cfcf65c9a6", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{20}$}F\\left( \\left. \\begin{array}{c}a,\\;b\\\\-b+a+1\\end{array} \\right |,z\\right)=\\frac{F\\left( \\left. \\begin{array}{c}\\frac{a}{2},\\;-b+\\frac{a}{2}+\\frac{1}{2}\\\\-b+a+1\\end{array} \\right |,-\\frac{4\\,z}{\\left(1-z\\right)^2}\\right)}{\\left(1-z\\right)^{a}}\\]" ], "text/plain": [ "(%o20) hypergeometric([a, b], [(- b) + a + 1], z) = \n", " a a 1 4 z\n", " hypergeometric([-, (- b) + - + -], [(- b) + a + 1], - --------)\n", " 2 2 2 2\n", " (1 - z)\n", " ---------------------------------------------------------------\n", " a\n", " (1 - z)" ], "text/x-maxima": [ "hypergeometric([a,b],[(-b)+a+1],z) = hypergeometric([a/2,(-b)+a/2+1/2],\n", " [(-b)+a+1],-(4*z)/(1-z)^2)\n", " /(1-z)^a" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DLMF15_8_16:hypergeometric([a,b],[a-b+1],z)=(1-z)^(-a)*hypergeometric([a/2,a/2-b+1/2],[a-b+1],-4*z/(1-z)^2);" ] }, { "cell_type": "markdown", "id": "119a1567-4a51-4df5-be9d-522fe3481067", "metadata": {}, "source": [ "今度は$CL1$の左辺をターゲットとして$DLMF15\\_8\\_16$の右辺を睨んで$a,b$に代入する値を考えます。ここでは$a=b=\\frac12$が良さそうです。" ] }, { "cell_type": "code", "execution_count": 25, "id": "83397411-5386-442c-8bc7-b0ae065c0fbb", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{29}$}F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,x\\right)=\\frac{F\\left( \\left. \\begin{array}{c}\\frac{1}{4},\\;\\frac{1}{4}\\\\1\\end{array} \\right |,-\\frac{4\\,x}{\\left(1-x\\right)^2}\\right)}{\\sqrt{1-x}}\\]" ], "text/plain": [ " 1 1 4 x\n", " hypergeometric([-, -], [1], - --------)\n", " 4 4 2\n", " 1 1 (1 - x)\n", "(%o29) hypergeometric([-, -], [1], x) = ---------------------------------------\n", " 2 2 sqrt(1 - x)" ], "text/x-maxima": [ "hypergeometric([1/2,1/2],[1],x) = hypergeometric([1/4,1/4],[1],-(4*x)/(1-x)^2)\n", " /sqrt(1-x)" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "DLMF15_8_16,a=1/2,b=1/2,z:x;" ] }, { "cell_type": "markdown", "id": "f9ea084d-098a-45b8-a3fc-40ff73797cdd", "metadata": {}, "source": [ "この式の右辺を、$CL1$の左辺と同じになるように、両辺を自乗して$1-x$をかけます。" ] }, { "cell_type": "code", "execution_count": 26, "id": "7a80a1a8-fc66-4aa2-9f96-7489a3ec50a0", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{30}$}F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,x\\right)^2\\,\\left(1-x\\right)=F\\left( \\left. \\begin{array}{c}\\frac{1}{4},\\;\\frac{1}{4}\\\\1\\end{array} \\right |,-\\frac{4\\,x}{\\left(1-x\\right)^2}\\right)^2\\]" ], "text/plain": [ " 2 1 1\n", "(%o30) hypergeometric ([-, -], [1], x) (1 - x) = \n", " 2 2\n", " 2 1 1 4 x\n", " hypergeometric ([-, -], [1], - --------)\n", " 4 4 2\n", " (1 - x)" ], "text/x-maxima": [ "hypergeometric([1/2,1/2],[1],x)^2*(1-x) = hypergeometric([1/4,1/4],[1],\n", " -(4*x)/(1-x)^2)\n", " ^2" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%^2*(1-x);" ] }, { "cell_type": "markdown", "id": "e530ec61-3c6a-42b0-a115-3a88de2f5400", "metadata": {}, "source": [ "$CL1$を使って右辺を書き換えます。" ] }, { "cell_type": "code", "execution_count": 6, "id": "f297b276-42a5-4433-9ecf-292784414a61", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{5}$}F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,x\\right)^2\\,\\left(1-x\\right)=F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2},\\;\\frac{1}{2}\\\\1,\\;1\\end{array} \\right |,-\\frac{4\\,x}{\\left(1-x\\right)^2}\\right)\\]" ], "text/plain": [ " 2 1 1\n", "(%o5) hypergeometric ([-, -], [1], x) (1 - x) = \n", " 2 2\n", " 1 1 1 4 x\n", " hypergeometric([-, -, -], [1, 1], - --------)\n", " 2 2 2 2\n", " (1 - x)" ], "text/x-maxima": [ "hypergeometric([1/2,1/2],[1],x)^2*(1-x) = hypergeometric([1/2,1/2,1/2],[1,1],\n", " -(4*x)/(1-x)^2)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%,CL1;" ] }, { "cell_type": "code", "execution_count": 7, "id": "3067acfa-2b1b-4a33-b0c6-b8c7398b6050", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{6}$}F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2}\\\\1\\end{array} \\right |,x\\right)^2=\\frac{F\\left( \\left. \\begin{array}{c}\\frac{1}{2},\\;\\frac{1}{2},\\;\\frac{1}{2}\\\\1,\\;1\\end{array} \\right |,-\\frac{4\\,x}{\\left(1-x\\right)^2}\\right)}{1-x}\\]" ], "text/plain": [ " 2 1 1\n", "(%o6) hypergeometric ([-, -], [1], x) = \n", " 2 2\n", " 1 1 1 4 x\n", " hypergeometric([-, -, -], [1, 1], - --------)\n", " 2 2 2 2\n", " (1 - x)\n", " ---------------------------------------------\n", " 1 - x" ], "text/x-maxima": [ "hypergeometric([1/2,1/2],[1],x)^2 = hypergeometric([1/2,1/2,1/2],[1,1],\n", " -(4*x)/(1-x)^2)\n", " /(1-x)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%/(1-x);" ] }, { "cell_type": "markdown", "id": "054d2ad8-d4d8-4c97-b7c2-85aa468d7b99", "metadata": {}, "source": [ "これで定理1の証明は終了です。" ] }, { "cell_type": "markdown", "id": "8aa39260-77c4-4358-81c0-5a4a97aec804", "metadata": {}, "source": [ "定理1の公式をもとにして定理2を証明します。そのために定理1の公式を書き換えます。まず$z={}_2F_1\\left(\\frac12,\\frac12;1;x\\right)$でした。ですから左辺は$z^2$です。また右辺はまず$-\\frac{4\\,x}{(1-x)^2}=-Y$を使って書き換えた上で、一般超幾何関数の定義に従って級数展開し、パラメータを代入すると、$$\\frac{1}{1-x}\\cdot \\sum_{k=0}^{\\infty}\\frac{\\left(\\frac12 \\right)_k\\,\\left(\\frac12 \\right)_k\\,\\left(\\frac12 \\right)_k\\,(-Y)^k}{(1)_k\\,(1)_k\\,k!}$$\n", "$(1)_k=k!$に注意すると結局次の式が得られます。\n", "$$z^2=\\frac{1}{1-x}\\cdot \\sum_{k=0}^{\\infty}\\frac{\\left(\\frac12 \\right)_k^3\\,(-1)^k\\,Y^k}{k!^3}$$\n", "以下ではこの式の両辺を微分するところから証明が始まります。" ] }, { "cell_type": "code", "execution_count": 8, "id": "12d299ce-731d-4623-9c8d-11f2d3a63554", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{7}$}\\left[ z\\left(x\\right) , Y\\left(x\\right) \\right] \\]" ], "text/plain": [ "(%o7) [z(x), Y(x)]" ], "text/x-maxima": [ "[z(x),Y(x)]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{8}$}z^2=\\frac{\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(-1\\right)^{k}\\,A_{k}}}{1-x}\\]" ], "text/plain": [ " inf\n", " ====\n", " \\ k k\n", " > Y (- 1) A\n", " / k\n", " ====\n", " 2 k = 0\n", "(%o8) z = ------------------\n", " 1 - x" ], "text/x-maxima": [ "z^2 = ('sum(Y^k*(-1)^k*A[k],k,0,inf))/(1-x)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{9}$}2\\,z\\,\\left(\\frac{d}{d\\,x}\\,z\\right)=\\frac{\\frac{d}{d\\,x}\\,Y\\,\\sum_{k=0}^{\\infty }{Y^{k-1}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}}{1-x}+\\frac{\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(-1\\right)^{k}\\,A_{k}}}{\\left(1-x\\right)^2}\\]" ], "text/plain": [ " inf inf\n", " ==== ====\n", " dY \\ k - 1 k \\ k k\n", " -- > Y k (- 1) A > Y (- 1) A\n", " dx / k / k\n", " ==== ====\n", " dz k = 0 k = 0\n", "(%o9) 2 z -- = --------------------------- + ------------------\n", " dx 1 - x 2\n", " (1 - x)" ], "text/x-maxima": [ "2*z*'diff(z,x,1) = ('diff(Y,x,1)*'sum(Y^(k-1)*k*(-1)^k*A[k],k,0,inf))/(1-x)\n", " +('sum(Y^k*(-1)^k*A[k],k,0,inf))/(1-x)^2" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "depends([z,Y],x);\n", "D1:z^2=sum((-Y)^k*A[k],k,0,inf)/(1-x);\n", "DD1:diff(D1,x);" ] }, { "cell_type": "markdown", "id": "246b732a-8cc5-429c-a42c-ddd775eca0ab", "metadata": {}, "source": [ "右辺の第1項の$Y$の指数を$k$にするために第1項を$Y$倍して$\\frac{4\\,x}{(1-x)^2}=Y$で割る操作を行い$D2$とします。" ] }, { "cell_type": "code", "execution_count": 9, "id": "14b0fc93-6a5c-4892-8568-66c12851986c", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{10}$}2\\,z\\,\\left(\\frac{d}{d\\,x}\\,z\\right)=\\frac{\\frac{d}{d\\,x}\\,Y\\,\\left(\\sum_{k=0}^{\\infty }{Y^{k}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)\\,\\left(1-x\\right)}{4\\,x}+\\frac{\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(-1\\right)^{k}\\,A_{k}}}{\\left(1-x\\right)^2}\\]" ], "text/plain": [ " inf inf\n", " ==== ====\n", " dY \\ k k \\ k k\n", " -- ( > Y k (- 1) A ) (1 - x) > Y (- 1) A\n", " dx / k / k\n", " ==== ====\n", " dz k = 0 k = 0\n", "(%o10) 2 z -- = --------------------------------- + ------------------\n", " dx 4 x 2\n", " (1 - x)" ], "text/x-maxima": [ "2*z*'diff(z,x,1) = ('diff(Y,x,1)*('sum(Y^k*k*(-1)^k*A[k],k,0,inf))*(1-x))\n", " /(4*x)\n", " +('sum(Y^k*(-1)^k*A[k],k,0,inf))/(1-x)^2" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "D2:substpart(subst(Y^k,Y^(k-1),part(DD1,2,1,1))/(4*x/(1-x)^2),DD1,2,1,1);" ] }, { "cell_type": "markdown", "id": "73362532-45ab-46b5-9bc1-ffc7dee7eba2", "metadata": {}, "source": [ "$Y$は$x$の式ですからその微分は簡単に計算できます。" ] }, { "cell_type": "code", "execution_count": 10, "id": "0f623818-23fa-497a-aef5-617aa9fe15c6", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{11}$}\\frac{d}{d\\,x}\\,Y=\\frac{8\\,x}{\\left(1-x\\right)^3}+\\frac{4}{\\left(1-x\\right)^2}\\]" ], "text/plain": [ " dY 8 x 4\n", "(%o11) -- = -------- + --------\n", " dx 3 2\n", " (1 - x) (1 - x)" ], "text/x-maxima": [ "'diff(Y,x,1) = (8*x)/(1-x)^3+4/(1-x)^2" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "D3:diff(Y,x)=diff(4*x/(1-x)^2,x);" ] }, { "cell_type": "markdown", "id": "5f10ad1a-0d3a-4cf1-b0bf-df912db07165", "metadata": {}, "source": [ "このこの微分の結果を$D2$の右辺第1項に見える微分に代入し結果を$D4$とします。" ] }, { "cell_type": "code", "execution_count": 11, "id": "d73a164d-f0c9-41a9-888d-0bd620446781", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{12}$}2\\,z\\,\\left(\\frac{d}{d\\,x}\\,z\\right)=\\frac{\\left(\\sum_{k=0}^{\\infty }{Y^{k}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}+\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)\\,x+\\sum_{k=0}^{\\infty }{Y^{k}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}}{x^3-2\\,x^2+x}\\]" ], "text/plain": [ " dz\n", "(%o12) 2 z -- = \n", " dx\n", " inf inf inf\n", " ==== ==== ====\n", " \\ k k \\ k k \\ k k\n", " ( > Y k (- 1) A + > Y (- 1) A ) x + > Y k (- 1) A\n", " / k / k / k\n", " ==== ==== ====\n", " k = 0 k = 0 k = 0\n", " --------------------------------------------------------------------\n", " 3 2\n", " x - 2 x + x" ], "text/x-maxima": [ "2*z*'diff(z,x,1) = (('sum(Y^k*k*(-1)^k*A[k],k,0,inf)\n", " +'sum(Y^k*(-1)^k*A[k],k,0,inf))\n", " *x\n", " +'sum(Y^k*k*(-1)^k*A[k],k,0,inf))\n", " /(x^3-2*x^2+x)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "D4:D2,D3,ratsimp;" ] }, { "cell_type": "markdown", "id": "cc2de850-1a1b-43db-83f5-a35efcb85cd0", "metadata": {}, "source": [ "アイゼンシュタイン級数の変換公式を思い出します。" ] }, { "cell_type": "code", "execution_count": 12, "id": "af429b09-b792-4d72-9905-c91a7ae724c7", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{13}$}P\\left(q^2\\right)=6\\,\\left(1-x\\right)\\,x\\,z\\,\\left(\\frac{d}{d\\,x}\\,z\\right)+\\left(1-2\\,x\\right)\\,z^2\\]" ], "text/plain": [ " 2 dz 2\n", "(%o13) P(q ) = 6 (1 - x) x z -- + (1 - 2 x) z\n", " dx" ], "text/x-maxima": [ "P(q^2) = 6*(1-x)*x*z*'diff(z,x,1)+(1-2*x)*z^2" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "EIZ:P(q^2)=(1-2*x)*z^2+6*x*(1-x)*z*diff(z,x);" ] }, { "cell_type": "markdown", "id": "4f84b0df-10ca-4cec-907b-c9bfba7be670", "metadata": {}, "source": [ "この式の微分の部分に$D4$を$2\\,z$で割った式を代入し$EIZ2$とします。" ] }, { "cell_type": "code", "execution_count": 13, "id": "6e84f451-b3ee-43fb-bb69-59804d5000ca", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{14}$}P\\left(q^2\\right)=\\left(1-2\\,x\\right)\\,z^2+\\frac{3\\,\\left(1-x\\right)\\,x\\,\\left(\\left(\\sum_{k=0}^{\\infty }{Y^{k}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}+\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)\\,x+\\sum_{k=0}^{\\infty }{Y^{k}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)}{x^3-2\\,x^2+x}\\]" ], "text/plain": [ " 2 2\n", "(%o14) P(q ) = (1 - 2 x) z + (3 (1 - x) x\n", " inf inf inf\n", " ==== ==== ====\n", " \\ k k \\ k k \\ k k\n", " (( > Y k (- 1) A + > Y (- 1) A ) x + > Y k (- 1) A ))\n", " / k / k / k\n", " ==== ==== ====\n", " k = 0 k = 0 k = 0\n", " 3 2\n", "/(x - 2 x + x)" ], "text/x-maxima": [ "P(q^2) = (1-2*x)*z^2+(3*(1-x)*x\n", " *(('sum(Y^k*k*(-1)^k*A[k],k,0,inf)\n", " +'sum(Y^k*(-1)^k*A[k],k,0,inf))\n", " *x\n", " +'sum(Y^k*k*(-1)^k*A[k],k,0,inf)))\n", " /(x^3-2*x^2+x)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "EIZ2:EIZ,D4/(2*z);" ] }, { "cell_type": "markdown", "id": "c9a473f4-b3c6-4b66-80d2-7196092df092", "metadata": {}, "source": [ "$EIZ2$の右辺第1項に見える$z^2$に$z^2=\\frac{1}{1-x}\\cdot \\sum_{k=0}^{\\infty}\\frac{\\left(\\frac12 \\right)_k^3\\,(-1)^k\\,Y^k}{k!^3}$を代入し整理した結果を$EIZ3$とします。" ] }, { "cell_type": "code", "execution_count": 28, "id": "61d2359c-ad41-4b4d-8075-daf2df618a39", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{31}$}P\\left(q^2\\right)=-\\frac{\\left(3\\,\\sum_{k=0}^{\\infty }{Y^{k}\\,k\\,\\left(-1\\right)^{k}\\,A_{k}}+\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)\\,\\left(x+1\\right)}{x-1}\\]" ], "text/plain": [ " inf inf\n", " ==== ====\n", " \\ k k \\ k k\n", " (3 > Y k (- 1) A + > Y (- 1) A ) (x + 1)\n", " / k / k\n", " ==== ====\n", " 2 k = 0 k = 0\n", "(%o31) P(q ) = - -----------------------------------------------------\n", " x - 1" ], "text/x-maxima": [ "P(q^2) = -((3*'sum(Y^k*k*(-1)^k*A[k],k,0,inf)+'sum(Y^k*(-1)^k*A[k],k,0,inf))\n", " *(x+1))\n", " /(x-1)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "EIZ3:EIZ2,D1,factor;" ] }, { "cell_type": "markdown", "id": "86d345a3-cda5-45a6-aa3b-a1e0546a32fc", "metadata": {}, "source": [ "右辺の分子に現れる$3$を総和記号の中に移し、2つの総和記号をまとめ、それを整理してまとめると次の式になります。" ] }, { "cell_type": "code", "execution_count": 30, "id": "83d99386-fbea-4926-b45b-c7e5ad59523b", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{33}$}P\\left(q^2\\right)=-\\frac{\\left(\\sum_{k=0}^{\\infty }{Y^{k}\\,\\left(3\\,k+1\\right)\\,\\left(-1\\right)^{k}\\,A_{k}}\\right)\\,\\left(x+1\\right)}{x-1}\\]" ], "text/plain": [ " inf\n", " ====\n", " \\ k k\n", " ( > Y (3 k + 1) (- 1) A ) (x + 1)\n", " / k\n", " ====\n", " 2 k = 0\n", "(%o33) P(q ) = - --------------------------------------\n", " x - 1" ], "text/x-maxima": [ "P(q^2) = -(('sum(Y^k*(3*k+1)*(-1)^k*A[k],k,0,inf))*(x+1))/(x-1)" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "substpart(factor(sumcontract(intosum(part(EIZ3,2,1,1,1,1))+part(EIZ3,2,1,1,1,2))),EIZ3,2,1,1,1);" ] }, { "cell_type": "markdown", "id": "aeec9c4c-aa18-4622-9cc5-e7a47a416650", "metadata": {}, "source": [ "これで定理2の第1式の照明は終了しました。

\n", "\n", "第2式の証明は簡単です。$q=e^{-\\pi\\,\\sqrt{n}}$のとき$x=x_n, Y=Y_n$なのでこれらを代入します。" ] }, { "cell_type": "code", "execution_count": 16, "id": "3440421c-14e2-4b16-9625-0543957a6156", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{17}$}P\\left(e^ {- 2\\,\\pi\\,\\sqrt{n} }\\right)=-\\frac{\\left(x_{n}+1\\right)\\,\\sum_{k=0}^{\\infty }{\\left(3\\,k+1\\right)\\,\\left(-1\\right)^{k}\\,A_{k}\\,Y_{n}^{k}}}{x_{n}-1}\\]" ], "text/plain": [ " inf\n", " ====\n", " \\ k k\n", " (x + 1) > (3 k + 1) (- 1) A Y\n", " n / k n\n", " ====\n", " - 2 %pi sqrt(n) k = 0\n", "(%o17) P(%e ) = - -------------------------------------\n", " x - 1\n", " n" ], "text/x-maxima": [ "P(%e^-(2*%pi*sqrt(n))) = -((x[n]+1)*'sum((3*k+1)*(-1)^k*A[k]*Y[n]^k,k,0,inf))\n", " /(x[n]-1)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%,q=exp(-%pi*sqrt(n)),Y=Y[n],x=x[n];" ] }, { "cell_type": "code", "execution_count": null, "id": "3db027fc-8989-45cf-b732-b5f4c65a2776", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Maxima", "language": "maxima", "name": "maxima" }, "language_info": { "codemirror_mode": "maxima", "file_extension": ".mac", "mimetype": "text/x-maxima", "name": "maxima", "pygments_lexer": "maxima", "version": "5.46.0" } }, "nbformat": 4, "nbformat_minor": 5 }