{ "cells": [ { "cell_type": "markdown", "id": "75dee015-1de0-4841-9c6b-ffa779a52a34", "metadata": {}, "source": [ "定理 ラマヌジャンのテータ関数$f(-q)=\\prod_{n=1}^{\\infty}(1-q^n)$について$a,b\\gt 1$, $a\\,b=\\pi^2$の時次の変換公式が成り立つ:\n", "$$ b^{\\frac{1}{4}}\\,e^ {- \\frac{b}{12} }\\,f\\left(-e^{- 2\\,b\\,n }\\right)=a^{\\frac{1}{4}}\\,e^ {- \\frac{a}{12} }\\,f\\left(-e^ {- 2\\,a\\,n }\\right)$$\n", "

\n", "\n", "証明の方針はデデキントのイータ関数$\\eta\\left(z\\right)=e^{\\frac{i\\,\\pi\\,z}{12}}\\,\\prod_{n=1}^{\\infty }{\\left(1-e^{2\\,i\\,\\pi\\,n\\,z}\\right)}$の保型性を表す次の式から式変形で導きます。\n", "$$\\eta\\left(-\\frac{1}{z}\\right)=\\sqrt{-i\\,z}\\,\\eta\\left(z\\right)$$\n", "この式の$z$に何を代入すれば良いのかが問題です。最初は$\\frac{a}{\\pi}=\\frac{\\pi}{b}$などを試していたのですが、式のあちこちに虚数単位が残りうまく行きませんでした。そもそもそれだとイータ関数の引数が実数になってしまい、定義域を外れているのですね。というわけで何か虚数を$z$に代入する必要があります。そこで安直に両辺に虚数単位をかけたものを代入してみるとビンゴでした。" ] }, { "cell_type": "code", "execution_count": 1, "id": "655cc869-8b34-4249-b5df-dd52aa5d704d", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{0}$}\\eta\\left(-\\frac{1}{z}\\right)=\\sqrt{-i\\,z}\\,\\eta\\left(z\\right)\\]" ], "text/plain": [ " 1\n", "(%o0) eta(- -) = sqrt(- %i z) eta(z)\n", " z" ], "text/x-maxima": [ "eta(-1/z) = sqrt(-%i*z)*eta(z)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "EM:eta(-1/z)=sqrt(-%i*z)*eta(z);" ] }, { "cell_type": "code", "execution_count": 2, "id": "fe1ea2d6-29e7-4055-87fe-fe24863bf9c5", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{1}$}\\pi^2=a\\,b\\]" ], "text/plain": [ " 2\n", "(%o1) %pi = a b" ], "text/x-maxima": [ "%pi^2 = a*b" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C1:%pi^2=a*b;" ] }, { "cell_type": "code", "execution_count": 3, "id": "a2a12d61-66de-46dd-b73e-e9a477c2a577", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{2}$}\\frac{i\\,\\pi}{b}=\\frac{i\\,a}{\\pi}\\]" ], "text/plain": [ " %i %pi %i a\n", "(%o2) ------ = ----\n", " b %pi" ], "text/x-maxima": [ "(%i*%pi)/b = (%i*a)/%pi" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C2:C1/(%pi*b)*%i;" ] }, { "cell_type": "markdown", "id": "f3d26b2b-e585-437c-a625-39d36773bc23", "metadata": {}, "source": [ "$EM$の左辺の$z$に$C2$の左辺を、$EM$の右辺の$z$に$C2$の右辺を代入します。" ] }, { "cell_type": "code", "execution_count": 4, "id": "2412e17b-07a3-4e7a-9190-9c8b99520005", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{3}$}\\eta\\left(\\frac{i\\,b}{\\pi}\\right)=\\frac{\\sqrt{a}\\,\\eta\\left(\\frac{i\\,a}{\\pi}\\right)}{\\sqrt{\\pi}}\\]" ], "text/plain": [ " %i a\n", " sqrt(a) eta(----)\n", " %i b %pi\n", "(%o3) eta(----) = -----------------\n", " %pi sqrt(%pi)" ], "text/x-maxima": [ "eta((%i*b)/%pi) = (sqrt(a)*eta((%i*a)/%pi))/sqrt(%pi)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "EM2:ev(lhs(EM),z=lhs(C2))=ev(rhs(EM),z=rhs(C2));" ] }, { "cell_type": "markdown", "id": "c269229e-4d5d-4a49-9ece-6b15770b4b28", "metadata": {}, "source": [ "イータ関数をその定義で置き換えます。" ] }, { "cell_type": "code", "execution_count": 5, "id": "403bcda3-6af2-4aaf-8743-ff0795ab9223", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{4}$}e^ {- \\frac{b}{12} }\\,\\prod_{n=1}^{\\infty }{\\left(1-e^ {- 2\\,b\\,n }\\right)}=\\frac{\\sqrt{a}\\,e^ {- \\frac{a}{12} }\\,\\prod_{n=1}^{\\infty }{\\left(1-e^ {- 2\\,a\\,n }\\right)}}{\\sqrt{\\pi}}\\]" ], "text/plain": [ " inf\n", " /===\\\n", " - a/12 ! ! - 2 a n\n", " inf sqrt(a) %e ! ! (1 - %e )\n", " /===\\ ! !\n", " - b/12 ! ! - 2 b n n = 1\n", "(%o4) %e ! ! (1 - %e ) = --------------------------------------\n", " ! ! sqrt(%pi)\n", " n = 1" ], "text/x-maxima": [ "%e^-(b/12)*'product(1-%e^-(2*b*n),n,1,inf)\n", " = (sqrt(a)*%e^-(a/12)*'product(1-%e^-(2*a*n),n,1,inf))/sqrt(%pi)" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "EM3:EM2,eta(z):=exp(2*%i*%pi*z/24)*product(1-exp(2*%pi*%i*z*n),n,1,inf);" ] }, { "cell_type": "code", "execution_count": 6, "id": "bd6538e0-6a9d-4684-915e-d0566b9f4eb4", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{5}$}\\frac{b^{\\frac{1}{4}}}{\\pi^{\\frac{1}{4}}}=\\frac{\\pi^{\\frac{1}{4}}}{a^{\\frac{1}{4}}}\\]" ], "text/plain": [ " 1/4 1/4\n", " b %pi\n", "(%o5) ------ = ------\n", " 1/4 1/4\n", " %pi a" ], "text/x-maxima": [ "b^(1/4)/%pi^(1/4) = %pi^(1/4)/a^(1/4)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "C3:(b*%pi/C1)^(1/4);" ] }, { "cell_type": "markdown", "id": "7602d9ed-6759-4cad-b9ba-e2714678fba9", "metadata": {}, "source": [ "$C3$の左辺と$EM3$の左辺をかけ、$C3$の右辺と$EM3$の右辺をかけたものは等しくなります。" ] }, { "cell_type": "code", "execution_count": 7, "id": "ff33d4b6-abfa-4854-a656-c8b506a7f4de", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{6}$}\\frac{b^{\\frac{1}{4}}\\,e^ {- \\frac{b}{12} }\\,\\prod_{n=1}^{\\infty }{\\left(1-e^ {- 2\\,b\\,n }\\right)}}{\\pi^{\\frac{1}{4}}}=\\frac{a^{\\frac{1}{4}}\\,e^ {- \\frac{a}{12} }\\,\\prod_{n=1}^{\\infty }{\\left(1-e^ {- 2\\,a\\,n }\\right)}}{\\pi^{\\frac{1}{4}}}\\]" ], "text/plain": [ " inf inf\n", " /===\\ /===\\\n", " 1/4 - b/12 ! ! - 2 b n 1/4 - a/12 ! ! - 2 a n\n", " b %e ! ! (1 - %e ) a %e ! ! (1 - %e )\n", " ! ! ! !\n", " n = 1 n = 1\n", "(%o6) ----------------------------------- = -----------------------------------\n", " 1/4 1/4\n", " %pi %pi" ], "text/x-maxima": [ "(b^(1/4)*%e^-(b/12)*'product(1-%e^-(2*b*n),n,1,inf))/%pi^(1/4)\n", " = (a^(1/4)*%e^-(a/12)*'product(1-%e^-(2*a*n),n,1,inf))/%pi^(1/4)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lhs(C3)*lhs(EM3)=rhs(C3)*rhs(EM3);" ] }, { "cell_type": "code", "execution_count": 8, "id": "9d1977ce-3575-4afd-9259-ea2eb298977b", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{7}$}b^{\\frac{1}{4}}\\,e^ {- \\frac{b}{12} }\\,\\prod_{n=1}^{\\infty }{\\left(1-e^ {- 2\\,b\\,n }\\right)}=a^{\\frac{1}{4}}\\,e^ {- \\frac{a}{12} }\\,\\prod_{n=1}^{\\infty }{\\left(1-e^ {- 2\\,a\\,n }\\right)}\\]" ], "text/plain": [ " inf inf\n", " /===\\ /===\\\n", " 1/4 - b/12 ! ! - 2 b n 1/4 - a/12 ! ! - 2 a n\n", "(%o7) b %e ! ! (1 - %e ) = a %e ! ! (1 - %e )\n", " ! ! ! !\n", " n = 1 n = 1" ], "text/x-maxima": [ "b^(1/4)*%e^-(b/12)*'product(1-%e^-(2*b*n),n,1,inf)\n", " = a^(1/4)*%e^-(a/12)*'product(1-%e^-(2*a*n),n,1,inf)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%*%pi^(1/4);" ] }, { "cell_type": "markdown", "id": "54f0978f-375e-4d97-8e1c-daa312610fa8", "metadata": {}, "source": [ "これで証明は終了です。簡単なものでもちゃんと証明できると嬉しいですね。

\n", "\n", "\n", "\n", "ところで途中で現れた$EM2$に対して$C3$を掛けて整理するとイータ関数に関する対称な式が得られます。やってみましょう。" ] }, { "cell_type": "code", "execution_count": 9, "id": "214a3a47-8f5d-4a34-a545-fbdff5da121b", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{8}$}\\frac{b^{\\frac{1}{4}}\\,\\eta\\left(\\frac{i\\,b}{\\pi}\\right)}{\\pi^{\\frac{1}{4}}}=\\frac{a^{\\frac{1}{4}}\\,\\eta\\left(\\frac{i\\,a}{\\pi}\\right)}{\\pi^{\\frac{1}{4}}}\\]" ], "text/plain": [ " 1/4 %i b 1/4 %i a\n", " b eta(----) a eta(----)\n", " %pi %pi\n", "(%o8) -------------- = --------------\n", " 1/4 1/4\n", " %pi %pi" ], "text/x-maxima": [ "(b^(1/4)*eta((%i*b)/%pi))/%pi^(1/4) = (a^(1/4)*eta((%i*a)/%pi))/%pi^(1/4)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lhs(C3)*lhs(EM2)=rhs(C3)*rhs(EM2);" ] }, { "cell_type": "code", "execution_count": 10, "id": "9fb7678e-3581-4dd0-85be-37fed08c43c1", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "\\[\\tag{${\\it \\%o}_{9}$}b^{\\frac{1}{4}}\\,\\eta\\left(\\frac{i\\,b}{\\pi}\\right)=a^{\\frac{1}{4}}\\,\\eta\\left(\\frac{i\\,a}{\\pi}\\right)\\]" ], "text/plain": [ " 1/4 %i b 1/4 %i a\n", "(%o9) b eta(----) = a eta(----)\n", " %pi %pi" ], "text/x-maxima": [ "b^(1/4)*eta((%i*b)/%pi) = a^(1/4)*eta((%i*a)/%pi)" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "%*%pi^(1/4);" ] }, { "cell_type": "markdown", "id": "6ccd3c93-c598-4da6-b9e1-c15aefac9d00", "metadata": {}, "source": [ "デデキントのイータ関数の保型性を出来るだけ対称な形で書こうとすると上記の式が綺麗ではないでしょうか。もちろん$a,b$の条件は$a,b\\gt 1$, $a\\,b=\\pi^2$です。ただこんな感じで書いてある例は見たことがありませんが、、、。" ] } ], "metadata": { "kernelspec": { "display_name": "Maxima", "language": "maxima", "name": "maxima" }, "language_info": { "codemirror_mode": "maxima", "file_extension": ".mac", "mimetype": "text/x-maxima", "name": "maxima", "pygments_lexer": "maxima", "version": "5.44.0" } }, "nbformat": 4, "nbformat_minor": 5 }